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AN OPTIMUM HIERARCHICAL SAMPLING PROCEDURE 

FOR CROSS-BEDDING DATA1 

J. S. RAO2 AND SUPRIYA SENGUPTA 

Indian Statistical Institute, Calcutta-35, India 

ABSTRACT 
The commonly used techniques for hierarchical or multistage sampling of cross-bedding foreset azimuths 

(for paleocurrent study) are based on the conventional analysis of variance. It is now well known that the 
classical method of analysis of variance (ANOVA), which partitions the sum of squares of the observations, 
can not be indiscriminately applied for the analysis of circularly distributed directional data. An efficient 
and economical sampling technique for cross-bedding data has been developed using the circular measures 
of dispersion and the approximate ANOVA of Watson. The technique is illustrated here with the help of 
the pilot-survey data of the fluviatile Kamthi formation. The following sampling problems have been solved: 
(1) the minimum sample size required for estimating, with a desired precision, the mean direction of a for- 
mation, (2) the optimum allocation of the samples between and within the outcrops that would allow effi- 
cient sampling at minimum cost. 

INTRODUCTION 

Cross-bedding foreset dip directions are 
known to provide one of the most depend- 
able clues to the paleocurrent. For efficient 
and economical sampling of foreset dip di- 
rections in a profusely cross-bedded forma- 
tion, it is essential to know the minimum 
number of observations which would give 
a mean direction with specified precision 
for the whole formation. 

An early attempt to provide a suitable, 
single stage sampling plan for cross-bedding 
was made by Reiche (1938) who suggested 
the technique of determination of the "flat- 
ness point" in a curve of the "cumulative 
vector directions" plotted against the num- 
ber of measurements. At a later date, Potter 
and Olson (Potter and Olson 1954; Olson 
and Potter 1954) following a hierarchical 
sampling plan, measured the variability as- 
sociated with different levels of sampling 
(between areas, between outcrops, between 
beds, and within beds). Their observations 
in the Pennsylvanian Mansfield formation 
showed largest variation between outcrops 

1 Manuscript received December 12, 1969; re- 
vised February 18, 1970. 

2 Present address: Department of Mathematics, 
Indiana University, Bloomington, Indiana 47401. 
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within townships and least variation within 
cross-bedded units. Potter and Pettijohn 
(1963) have also recommended the analysis 
of variance (ANOVA) for development of an 
efficient sampling plan. 

Raup and Miesch (1957) have suggested 
a simple field method for determination of 
the most efficient and economical sampling 
scheme. Their method is based on Stein's 
two-stage sampling procedure where the 
minimum number of measurements required 
to obtain a "significant average" (an aver- 
age which lies within previously specified 
confidence limits) is estimated from the 
standard deviation of the first fifty measure- 
ments. 

It has been stressed by a number of ear- 
lier authors (e.g., Watson 1966; Sengupta 
and Rao 1966; Rao 1969) that the conven- 
tional statistical techniques are of little use 
in the analysis of circularly distributed di- 
rectional data like cross-bedding foreset 
azimuths. Although the directions can be 
measured as angles with respect to some 
arbitrary origin, the arithmetic mean fails 
to provide a representative measure of 
the mean for such data, and the usual 
standard deviation of measurements) using 
the approximate ANOVA of Watson (1956, 
method of ANOVA, which partitions the 
sums of squares of the observations, can not 
be indiscriminately applied in the analysis 
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of circularly distributed directional data. 
These facts put into doubt the sampling 
plans of the earlier authors (e.g., Potter and 
Olson 1954; Potter and Pettijohn 1963; 
Raup and Miesch 1957) which were based 
on the conventional ANOVA. 

It is now well known that the direction 
of sample resultant provides a reasonable 
estimate of the population mean direction 
for data having unimodal circular distribu- 
tion, and the length of the resultant can be 
used to obtain an appropriate measure of 
dispersion. The purpose of the present paper 
is to develop an efficient sampling technique 
which takes into consideration the circular 
measures of dispersion (instead of the usual 
standard deviation of measurements) using 
the approximate ANOVA of Watson (1956, 
1966). Admittedly, the methods adopted 
here are approximate, but these approxima- 
tions can be shown to hold good with a fair 
degree of accuracy. 

Attempts will be made to answer three 
major questions in the present paper: (1) 
how many observations should be taken 
within a geological formation so that the 
mean direction is reasonably close to the 
true value of the mean, (2) how should the 
sampling effort be distributed over two 
stages (between outcrops and within out- 
crops) so that the overall estimate has the 
desired precision, and (3) if cost (or time) 
considerations could be profitably intro- 
duced, what is the procedure which would 
minimize the cost (or time) involved. The 
questions posed here are the usual questions 
faced in sampling and have been handled in 
several standard texts on the subject. The 
novelty of the present approach lies essen- 
tially in the use of the circular measures of 
dispersion and the corresponding ANOVA 
instead of the classical ANOVA based on 
variances. 

GEOLOGY OF THE AREA AND 
THE PILOT SURVEY 

The technique of analysis developed here 
is illustrated with the help of the data ob- 
tained from the Permo-Triassic, fluvial Kam- 
thi formation. Three members of the Kamthi 
(lower, middle, and upper) were sampled 

near Bheemaram, in southeast India for this 
purpose. Depositional environments of these 
rocks have been discussed in detail elsewhere 
(Sengupta 1970). In short, the upper and 
the middle Kamthi sandstones represent the 
younger and older point-bar and channel- 
bar deposits of the Kamthi river. A part of 
the middle Kamthi member also includes 
the levee deposits adjacent to the main river 
channel. The lower Kamthi sandstones 
represent cutoff meander channels within 
the older floodplain deposits of the river. An 
earlier statistical analysis of a large sample 
of the Kamthi data has indicated that the 
population means of the cross-beddings as 
well as their dispersions are significantly dif- 
ferent in the three Kamthi members (Sen- 
gupta and Rao 1966). 

For the purpose of the present work, a 
"pilot survey" was conducted and a set of 
280 fresh measurements were taken in about 
42 square miles of the Kamthi formation, 
following a rigid sampling scheme. A mini- 
mum number of widely spaced outcrops 
were measured from the three Kamthi mem- 
bers. Although the choice of an outcrop was 
partly guided by its accessibility, this was 
not allowed to be a significant source of bias 
in the analysis. The number of outcrops 
measured in each case was broadly propor- 
tional to the exposed area of the Kamthi 
member concerned. Thus, six outcrops were 
measured from the lower Kamthi member 
(area: approximately 8 square miles), eight 
from the middle Kamthi member (area: ap- 
proximately 12 square miles), and fourteen 
from the upper Kamthi member (area: ap- 
proximately 22 square miles). A fixed num- 
ber of ten measurements of foreset-dip direc- 
tions were made in each outcrop by random 
sampling. 

The model and method of analysis de- 
scribed below give a general idea of the 
sampling plan to be adopted under two dis- 
tinctly different conditions: (1) when the 
cross-beddings are profuse and the foreset- 
dip directions are fairly consistent, as in 
the middle and the upper Kamthi, and (2) 
when the cross-beddings are less frequent 
and the dispersions are relatively higher, as 
in the lower Kamthi. 
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The method of analysis discussed here 
(and illustrated with the Kamthi data) is 
of a general nature and can be utilized by 
anyone having similar problems involving 
circular data. 

THE MODEL AND THE METHOD 

OF ANALYSIS 

We will consider a hierarchical or multi- 
stage sampling scheme. For our purposes it 
is sufficient to consider a situation with only 
two levels, though the results of this and 
the next section can easily be extended to 
the case where there are more levels of 
classification. Suppose, as in the present 
case, the first-stage units are called "out- 
crops" and the second-stage units, "observa- 
tions." Further, suppose that we have taken 
n first-stage units or outcrops and m second- 
stage units or observations from each of 
these first-stage units. It is, however, not 
essential to choose the same number of sec- 
ond-stage units from each first-stage unit 
though this will considerably simplify the 
computations as well as the expressions in- 
volved. Let cij denote the jth observation 
from the ith outcrop (j = 1, ... m; i = 1, 
.. ., n) of the formation. We assume 

#is = 7 + (4 + €~ , (1) 

where 7 = the mean direction for the for- 
mation, (i = deviation due to the ith out- 
crop from the overall (or formation) mean 
direction, and ei = error term. The devia- 
tions at each level are supposed to average 
out to the mean of the next higher level. 
For example, if the number of observations 
are increased indefinitely in an outcrop, then 
their resultant direction would approach the 
particular outcrop mean direction. More 
precisely, we assume that within the ith 
outcrop, the observations 4i, have a "circu- 
lar normal distribution" (CND), with mean 
direction (7 + (i) and a concentration 
parameter 0w. It may be recalled that a ran- 
dom angle 4, with reference to any arbi- 
trary vector in two dimensions, is said to 
have a CND with parameters y and K if it 
has the density 

1 e" (-<>, O < 4 < 2r. (2) 

Here 7 is the population-mean angle and K 
is a measure of concentration, larger values 
of K standing for more concentration around 
the mean direction 7. While 4,i's for any 
fixed i have a CND with parameters 7 + (, 
and w, the (,'s themselves have a CND with 
the mean direction as the zero direction and 
a concentration parameter, fp. In other 
words, the different outcrop means have a 
CND whose mean is the formation mean y 
and whose concentration parameter is 3. It 

may be remarked that most of our analysis 
would remain valid even if the assumptions 
of circular normality do not hold strictly 
for the data in question. 

In a particular formation in whose mean 
direction we are interested, suppose we visit- 
ed n outcrops and took m observations from 
each of them, thus making a total sample of 
size N = mn for the whole forniation. We 
then compute the lengths of the resultant 
Ri(i = 1, . . . , n) where 

R: = cos < + ( sin <~ i (3) 

for the n individual outcrops as well as the 
length of the overall resultant, R, where 

R2 = cos i2 
i=1 j=1 I 

+ sin $ij <= 1 

(4) 

based on all the N observations. Now it is 
well known (Watson 1966; Rao 1969) that if 
R is the length of the resultant based on p 
observations from a CND with concentra- 
tion parameter K, then 2K(p - R) is ap- 
proximately distributed as a x2 with (p - 1) 
degrees of freedom if K is large. Using this 
fact, one can have the following approxi- 
mate ANOVA for the angular data (Watson 
1966). Here 

n 

1 1 
m n - 1 N (5) 

in case a variable number of mi observations 
are taken from the ith outcrop. This mf is a 
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weighted average of the mi's, and if mi = m 
for all outcrops then ii = m. 

From table 1 we can test the significance 
of between-outcrop variations by using the 
F-test 

which has a F distribution with (n - 1) 
and (N - n) degrees of freedom under the 
usual ANOVA set up or under the so-called 
Model I of ANOVA. Under Model II, the 
same technique and computations may be 
used to estimate the between-outcrop and 

again have a CND with a concentration 
parameter 

(7) 1 + 
(n )-' + (N~)-1 

These results for the circular (or two- 
dimensional) data are completely analogous 
to those of Watson (1966) and Watson and 
Irving (1957) for the three-dimensional di- 
rections. 

ESTIMATING THE FORMATION-MEAN 
DIRECTION WITH A SPECIFIED 

PRECISION 

Suppose we want to estimate the forma- 
tion mean 7 with a semiangle of confidence 

TABLE 1 

ANOVA TABLE FOR ANGULAR DATA 

Source of Variation df SS MS E(MS) 
(1) (2) (3) (4) (5) 

Between outcrops n-1 R-R (,Ri-R)/(n- 1) a) 

^1 Within outcrops N-n N- _R (N- ZRi)/(N-n) 

Total N-1 N-R 

within-outcrop concentrations-0 and co, re- 
spectively-under the assumptions we have 
made in the beginning of this section. If the 
test in (6) shows no significant variation be- 
tween the sites (or outcrops), then the be- 
tween-outcrop variation may be ignored or, 
in other words, the concentration parameter 
B may be taken to be infinity. If, on the 
other hand, the F-test gives a significant re- 
sult, then the estimates of f and w, say f 
and co, may be obtained by equating the 
mean squares (MS) in column 4 of table 1 
with the corresponding expectations in col- 
umn 5. 

Now if all the N = mn observations are 
used to get the overall resultant and its di- 
rection iN is used to estimate the mean 
direction of the formation, then this will 

,lo at a confidence level 1 - a, (0 < a < 1). 
That is, if VN denotes the direction of the 
overall resultant based on N observations, 
we want the estimate 7N to lie within the 
interval 7 - /o to 7 + Lo in (1 - a) per- 
cent of the cases. This would clearly depend 
on the distribution of TN, which from the 
earlier section is circular normal with con- 
centration given by (7). Thus the concen- 
tration parameter K associated with the dis- 
tribution of iN would determine the con- 
fidence interval for 7. But since in our case 
the problem is one of finding the sample 
size required in order to have a confidence 
interval of specified width and confidence 
level, we try to determine a value of K, say 
KO, required for 7j to lie in the specified in- 
terval with the given probability. Thus we 
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must first answer the question: How large 
should K be such that a semiangle of confi- 
dence #o around y carries a probability of 
(1 - a) percent? If K were less than 7, one 
can refer to Watson's (1966) chart and read 
out the required K. But this range of K values 
is too small to be of use in most practical 
situations of our interest where the K values 
often exceed 100. For such large values of K, 
the following normal approximation to the 
CND can profitably be used. If 4 is a ran- 
dom angle having a CND with parameters 
7 and K, then it is known that the distribu- 

standard normal distribution (e.g., Xa = 
1.96 for a = 5 percent). Comparing (8) and 
(9), VKo #o = Xa or 

Xe 
KO = Po 

We give a short table of values of Ko 
(table 2) required to attain some commonly 
specified precisions as given by /o and a. 

Thus if tN is to attain the given precision, 
the number of outcrops n and the number 
of observations in each, namely, m, should 

TABLE 2 

VALUE OF Ko REQUIRED FOR YN TO 

ATTAIN A GIVEN PRECISION 

fo (1-a) KO 
Semiangle of Confi- Confidence Concentration 

dence Level Value Required 

50 0.90 354.6292 
0.95 504.0610 
0.99 870.6882 

100 0.90 88.7598 
0.95 126.1125 
0.99 217.9236 

200 0.90 22.1772 
0.95 31.5221 
0.99 54.4496 

tion of 4* = /K (4 - y) approaches a 
standard normal distribution for large K. 
Therefore, for given a(0 < a < 1), we want 
a K for which 

(1 - a) = P, (7 - to < 7 + 0o) 

- P(-V/ Ko < V (qS- y) 

(8) 
< V/ ro) 

= P(1*1 <V ' o). 

But since 4* is distributed as N(0, 1), we 
have 

P(| ** < xi) = (1 - )o (9) 

where X, is the a percent point for the 

be such as to give a K value as shown in 
table 2. In other words, from (7) m and n 
should be such as to satisfy the equation 

1 

o (KO )_, + (m )-1 " 
(11) 

in order that the overall resultant direction 

have a specified accuracy, where Ko is de- 
termined by #ko and a and is obtained from 
table 2. The equation (11) still does not com- 
pletely specify what m and n should be. 

Several sets of m and n values are possible, 
of which we may choose one depending on 
the convenience and availability of out- 
crops. For example, if a maximum number 
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of only no outcrops are available, then one 
can obtain the value of m from (11) as 

1 
m = (.l--- - 

If, on the other hand, a large number of out- 
crops are available and one wants to take 
only one observation per outcrop (i.e., 
m = 1), then we need to visit 

1 1 1\ 
n = - + -J 

outcrops. Between these two extremes, one 
has several choices for m and n, all of which 
lead to the same precision for the overall 
resultant direction. 

We will now introduce cost considera- 
tions into the picture and then try to ar- 
rive at an optimum choice of m and n, that 
is, a choice which minimizes the total cost 
of the operation. We generally have a rough 
idea as to the cost (or time) involved in 
visiting an outcrop and in taking a single 
observation. Let C1 be the cost involved in 
reaching the outcrop (location, identifica- 
tion, and transportation costs) and C2 be the 
cost of making an observation within the 
outcrop. Then the total cost involved in the 
operation may be expressed as 

C = Co + nC1 + nmC2, (12) 

where Co is the total overhead cost. Now we 
might ask for a choice of m and n, which, 
besides assuring us of a specified precision, 
minimizes the cost involved in the entire 
operation. It may be remarked that we do 
not need to have a precise idea about the 
costs C1 and C2. What is needed for our 
purposes is only a rough idea about the rela- 
tive costs, or the ratio Ci/C2. 

It is clear from (7) that the number of 
outcrops, n, way be expressed as 

n = Ko 6+ .• (13) 

Substituting this in the cost function (12), 
we have 

C = Co + n(Ci + mC2) 

= Co + Ko(\ + ) (C1 + mC2) 

(14) 
= terms not containing m 

( Cx mC,\ + K + --) , 

which when minimized with respect to m 
gives 

or m = (15) 

Thus the optimum number of observations 
that should be taken from each outcrop is 
given by (15). Substituting this in (13), we 
get the corresponding value of n, the opti- 
mum number of outcrops. If m and n are 
chosen this way, the minimum cost asso- 
ciated with this operation (or survey) 
would be 

Cmin = Co + KO (1+ 

• -C (16) 

The optimum value of m given in (15) can 
also be found graphically by plotting the 
cost (14) as a function of m. Such graphs 
can be made for several choices of C1/C2 
and /^/. 

The expressions for the optimum values 
of m and n, say m* and n*, would, in gen- 
eral, contain a fractional part, in which case 
it may be rounded off to the next higher in- 
teger so that the final estimate would be 
at least as accurate as required. In fact, if 
this is done and, say, mo and no are the op- 
timum values so arrived at, then 'N will 
have a precision parameter 

1 
K (not)_ + (monoc)_ (17) 
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and hence the semiangle of confidence for 
YN will be 

= . (18) 

We illustrate these ideas and methods in 
the following section by applying them to a 
specific situation. 

ANALYSIS OF KAMTHI POPULATIONS 

Earlier studies (Sengupta and Rao 1966) 
have shown that the cross-bedding foreset- 
dip directions of the three Kamthi members 
belong to three significantly different popu- 
lations. Thus we have a simple hierarchical 

classification within each Kamthi member 
with two levels of sampling in each, namely, 
outcrops and observations. 

As mentioned in the beginning, for the 
present analysis a total of twenty-eight out- 
crops were sampled, out of which fourteen 
are from the upper Kamthi (UK), eight from 
the middle Kamthi (MK), and the rest 
from the lower Kamthi (LK). From each 
outcrop we have taken a total of ten obser- 
vations at random though, as we remarked 
earlier, it is not essential to have the same 
number of observations within each outcrop. 
However this will facilitate computations. 

We shall first deal with the UK, and the 
analysis of the other two populations pro- 
ceeds on exactly similar lines. We shall use 
the subscript U to denote the quantities 
corresponding to the UK population. We 
then have nv = 14 outcrops with my = 10 

observations from each. The ANOVA table 
for these Nu = 140 observations belonging 
to the UK is given below. The data and the 
details of computation are not presented for 
reasons of brevity. The overall resultant 
based on all the 140 observations is Ru = 
(82.5159, -22.5615), with a length Ru = 
x/(82.5159)2 + (-22.5615)2 = 85.5447. The 
sum of the lengths of individual resultants is 

14 

Rwu = 91.8074. 
i=-1 

From this, we form the ANOVA table for 
the UK data (see table 3). The value of the 
F-statistic, 1.2593, is insignificant at the 5 

percent level with 13 and 126 degrees of 
freedom, the tabulated critical value being 
1.83.3 Thus the variation between outcrops 
is not significant in the UK population and 
hence i, the measure of concentration be- 
tween UK outcrop means, may be taken to 
be infinity. In other words, all the UK out- 
crops may be taken to have the same mean 
direction which is also the UK formation- 
mean direction. If /3 = o, then estimate 
of w, say c&r, may be obtained by pooling 
the between and within the sum of the 
squares and the degrees of freedom. This 
gives cg = 2.5526. 

Also equation (7) for K reduces to 

K = NW . (19) 

Therefore, the number of observations N 
* This situation needs special treatment not dis- 

cussed earlier. 

Source 

Between outcrops 

Within outcrops 

Total 

df 

13 

126 

139 

TABLE 3 

ANOVA TABLE FOR UK DATA 

SS MS 

6.2627 0.4817 

48.1926 0.3825 

54.4553 

E(MS) 

1(1 10\ 
2\wu +' 3u 

1 
2wv 

F 

F=1.2593 
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which one should take in order to attain a 
semiangle of say 100 with 95 percent confi- 
dence (which corresponds to a value of KO = 
126.1125 from table 2) is 

Ko 126.1125 
N = 2.5526 49.40, (20) 

U 

or roughly fifty observations. Thus, in the 
UK, one can estimate the formation-mean 
direction to within +100 with 95 percent 
confidence on the basis of fifty observations. 

However, the evidence for accepting the 
hypothesis / = oo is not strong, the F-value 
being not too small. Therefore, one may 
take into account the between-outcrop vari- 
ation also, in which case we follow the pro- 
cedure as outlined in the earlier section. We 
find the estimates, f and c, by equating col- 
umns 4 and 5 of table 3, and we get 

Wu = 1.3072 and vu = 50.4032 (21) 

for the UK formation. If we now wish to 
estimate the formation mean with + 100 ac- 
curacy with 95 percent confidence (which 
corresponds to a K value of 126.1125), the 
values m and n should satisfy the equation 
(7), that is, 

126.1125 = nu , 

or (22) 
nv = 126.1125 [(50.4032)-1 

+ (mu 1.3072)-1]. 

Throughout our present study we assume 
a cost ratio of Ci/C2 = 10/1, which seems 
to be reasonable in our case. Now appeal- 
ing to (15), the optimum number of obser- 
vations, say m*, to be taken within each 
UK outcrop is given by 

= < CaC - 110 X 50.4032 
m C2 ~ 1 X 1.3072 (23) 

= 19.6, 

or roughly twenty observations from each 
outcrop. Substituting this value of m*j = 20 
in (22), 

* 126.1125(5 1O) 
n 1 50.4032 + 26.1440/ (24) 

= 7.3258, 

or roughly 7.4 Thus in UK if one takes 
seven outcrops and twenty observations 
from each, this would, besides giving us 
the required accuracy, also minimize the 
overall cost of estimating the forma- 
tion mean. In fact, if we took seven out- 
crops and twenty observations from each, 
the accuracy parameter K for the overall 
resultant direction is, from (17), KU = 7/ 
{(50.4032)-' + [20(1.3072)]-1} = 120.5033, 
and hence the estimated mean direction has 
the semiangle of confidence 

Xo.os 1.96 
u VKU- V120.5033 

= 0.1785 radians, 
(25) 

or 100 13' with 95 percent confidence. 
Similar analysis can be done for the other 

two Kamthi populations. For the eight out- 
crops of the MK with ten observations from 
each; we have ANOVA table 4. For 7 and 
72 df, the F-value of 4.5660 is quite signifi- 
cant even at 1 percent level, the tabulated 
value being 2.14, and therefore the several 
site (outcrop) means differ significantly in 
the MK. Our model is thus more appropri- 
ate in this situation. Equating columns 4 
and 5 of table 4, we get the estimates / and 

for the MK, namely, 

WM = 2.0000, and d/M = 5.6085. (26) 

Now if we are to estimate the overall mean 
direction with a semiangle of ± 100 with 95 
percent confidence as in the earlier case, the 
nM and mM should satisfy the equation 

126.1125 = nM 
()-1 + (mM .M)-1 

or 

nuM = 126.1125 [(5.6085)-1 

+ (mM 2.0000)-1. 

(27) 

4 Earlier we suggested rounding off such fractions 
to the next higher integer. But this need not be fol- 
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But from equation (16) and an assumed 
cost ratio of 10/1, the optimum number of 
observations to be taken in a MK outcrop is 

/10 X 5.6085 m = 1X 2.0000 = 5.295, (28) 

or roughly 6. Now from (27) the number of 
outcrops to be visited in the MK is 

n* = 126.1125 12000 (29) 
M 5.6085 12.0000 (29) 

= 32.99, 

or roughly 33. Thus for minimizing the cost 
of the operation, we need to take thirty- 

Finally for the six outcrops of the LK, 
where again we have taken ten observations 
in each, we have the ANOVA shown in 
table 5. Here again the F-value is significant 
at 5 percent level with 5 and 54 df, the tabu- 
lated value being 2.40. Thus the site (out- 
crop) means in LK do vary significantly. 
Therefore, equating columns 4 and 5 of 
table 5, we have 

<oL = 1.3154, and 1L = 6.1058. (31) 

If we wish to estimate the LK formation 
mean by means of the direction of the over- 
all resultant, again with an accuracy of 

TABLE 4 

ANOVA TABLE FOR MK DATA 

Source df SS MS E(MS) F 

Between outcrops 7 7.9907 1.1415 - F=4.5660 

Within outcrops 72 17.9985 0.2500 
2M 

Total 79 25.982 

three outcrops in the MK but only six ob- 
servations from each. This larger number 
of outcrops is a consequence of the fact 
that in MK the between-outcrop varia- 
tion is very significant. This scheme of visit- 
ing thirty-three outcrops and taking six 
observations from each would give an ac- 
curacy parameter of KM = 33/[(5.6085)-1 + 
(6 X 2.0000)-1] = 126.1303 for the resul- 
tant based on 33 X 6 = 198 MK observa- 
tions. The MK mean can be estimated with 
a semiangle of 

S 1.96 

M = 126.1303 (30) 

= 0.1745 radians, 

or 100 with 95 percent confidence. 

lowed as a hard and fast rule since that would often 
increase the sample size and we would have much 
more precision than we asked for. 

+ 100 with 95 percent confidence, then the 
nL and mL should satisfy the equation 

126.1125 = n 
( L)-1 + (mLL)-1 

or 

nL = 126.1125 [(6.1058)-1 
(32) 

+ (mL 1.3154)-1]. 

But the equation (16) involving costs tells 
us that 

S= O/10X 6.1058 
m*I 1 X 1.3154 =6.8125, (33) 

or roughly seven observations should be 
taken from each LK outcrop. Substituting 
this value of mL = 7 in (32), 

,* = 126.1125[ 1 1 =121 6.1058 7(1.3154) 

= 34.35 , 
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or roughly 34. Thus we should sample 
thirty-four outcrops in the LK taking seven 
observations from each which leads to an 
accuracy parameter of 

34 
K"= (6.1058)-i + [7(1.3154)]-1 

= 124.8246 

for the distribution of the overall resultant 
direction. Then this sample mean direction 
based on 34 X 7 = 238 observations would 
be within PL = 1.96//124.8246 = 0.1754 
radians, or 10°3' of the true LK formation 
mean with 95 percent confidence. 

ber of observations required for estimation, 
with a desired precision, of mean direction 
which will be reasonably close to the true 
value of the formation mean; and (2) the 
pattern of distribution of the samples be- 
tween and within the outcrops that would 
allow sampling with optimum efficiency and 
at minimum cost. 

The techniques used here in finding an- 
swers to these questions can be summarized 
as follows: 

1. To start with, a small number of repre- 
sentative cross-bedding samples are ob- 
tained (a more or less uniformly spaced grid 
sample) for the population (formation) un- 

TABLE 5 

ANOVA TABLE FOR LK DATA 

Source df SS MS E(MS) F 

Between outcrops 5 5.9950 1.1990 + F=--3.1544 

Within outcrops 54 20.5235 0.3801 
2W. 

Total 59 26.5185 

SUM.MARY AND CONCLUSIONS 

The techniques so far used for sampling 
and analysis of cross-bedding data were 
based on the conventional ANOVA. It is 
now well known that for the circularly dis- 
tributed directional data (like cross-bedding 
foreset azimuths) the technique of ANOVA 
is of little use. For such data, the direction 
of the sample resultant (instead of the 
arithmetic mean) provides a reasonable esti- 
mate of the population mean, and the length 
of the resultant (instead of the standard de- 
viation) provides an approximate measure 
of dispersion. 

An efficient and economical sampling 
technique for cross-bedding directions has 
been developed in the present work using 
the circular measures of dispersion. With 
the help of the pilot-survey data of the flu- 
viatile Kamthi formation, it has been at- 
tempted to find out: (1) the minimum num- 

der study. Observations from each outcrop 
within the population are recorded separate- 
ly. Equal number of observations from each 
outcrop facilitates computations, although 
this is not an essential requirement. 

2. Sine and cosine values are computed 
for each foreset-dip direction (0) measured. 
The resultant direction for each outcrop is 
computed as in equation (3), that is, 

R. = cos <) + E sin 0,) 

= Co + s, 

where Ri is the outcrop resultant for the ith 
outcrop and m = number of observations 
within each outcrop. 

3. The overall resultant for all the out- 
crops is now computed as in (4), that is, 

= i=l / + i  
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where n = number of outcrops surveyed 
and C and Si are as in step 2 above, that is, 

Ci = E cos 4,i, 
and i-1 

Si = C sin 4ii. 
i-1 

4. The appropriate values are now filled 
in table 1. 

5. The values for concentration within 
outcrop (co) and concentration between out- 
crops (B) are obtained by equating columns 
4 and 5 of table 1. 

6. The optimum number of observations 

ability is smallest in case of the upper Kam- 
thi member where the sediments were de- 
posited as point bars and channel bars of 
a river, apparently having a fairly consistent 
direction of sediment transport. The situa- 
tion requires sampling of only a few out- 
crops and collection of a comparatively 
greater number of observations within each 
outcrop-an easy plan to follow in the field. 

The large, between-outcrop variation in 
lower Kamthi demands measurement of a 
large number of outcrops. The lenses of 
cross-bedded sandstones measured in the 
lower Kamthi are interpreted as remnants 
of cut-off meander channels caught up with- 

TABLE 6 

SCHEME OF SAMPLING OF KAMTHI CROSS-BEDDING DATA 

No. Observa- 
No. Outcrops tions Required Total No 

Formation Member to be within Each Observations 
Sampled (n*) Outcrop 

(m*) 

Upper Kamthi 7 20 140 
Middle Kamthi 33 6 198 
Lower Kamthi 34 7 238 

to be taken in an outcrop, m*, is obtained 
from equation (15), that is, 

m* = C*^lf3 
C2<0 ' 

where C1 and C2 are the costs for reaching 
an outcrop and taking an observation within 
an outcrop, respectively. 

7. The optimum number of outcrops to 
be sampled, n*, is obtained from equation 
(13), where Ko, the concentration for a de- 
sired confidence level (1 - a) and the semi- 
angle of confidence, (/o), is obtained from 
table 2. 

This technique of analysis suggests the 
scheme of sampling for the Kamthi forma- 
tion members as shown in table 6. 

This shows that between-outcrop vari- 

in the flood basin deposits-a pattern which 
can be expected to have little consistency. 

The large between-outcrop variation in 
middle Kamthi is presumably related to the 
fact that a part of this member represents 
irregularly deposited levees adjacent to the 
main river channel. 
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